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Inertial Navigation System (INS) Simulator Program:
Top-Level Design

Preface

Ada design work on the Inertial Navigation System (INS) Simulator by the Software Engineering

Institute (SEI) Real-Time Embedded Systems Testbed (REST) Project was undertaken to investigate

the application of explicit concurrency to hard real-time requirements. Through a strategy of Ada task

partitioning based on behavioral modes (e.g., active or passive, depending upon the implemented

operations), design rules were sought to enable effective program structures within stringent real-time

environments. The INS Behavioral Specification [Landherr 87a] and the INS Program Top-Level De-

sign [Klein 87] reflected the status of this work prior to changes brought about by the pace of investi-

gation.

Recent advances in schedulability analysis have shown that the dynamic performance of an Ada task

implementation can be reliably predicted, and that improvement is achievable through analytical

means. With the goal of giving maximum visibility to these techniques, the presentation of the Top-

Level Design has been updated to give proper emphasis and visibility to this approach for real-time

O design. In addition, greater weight has been placed on portability issues; the objective is to reduce

implementation-dependent decisions by abstracting out those concerns from the top-level description.

Reflecting these concerns, the current INS Behavioral Specification [Landherr 89] documents the

immediate goals of the effort. Runtime BIT and data extraction have consequently been deleted from

the requirements and design of the INS to focus on the central problems involved in constructing

real-time software.
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1. Introd ction
Abstract: Hard real-time systems have consistently proven to be some of the most difficult
for successful software implementation. Attributes often associated with the intractable
nature of real-time are concurrency, severe timing constraints, the complexity of real-world
devices, and limited resources. In this experiment, an actual embedded hard real-time
application (Inertial Navigation Set, AN/WSN-5) is simulated and ported to a variety of tar-
get processors. The effort is specifically directed at investigating the capability of Ada for
providing program development solutions in the hard real-time regime. Special emphasis is
focused on applying the built-in concurrency capabilities of Ada. The effort contends with
typical cross-targeting issues such as board-level execution and memory configuration, de-
vice communications, and runtime debugging of the application. This report presents the
top-level design of the application and addresses the solution in terms of a concurrency
abstraction. Beginning with a classical data flow analysis of the requirements, Ada tasks
are derived from analyzable categories, specifically periodics, aperiodics, and servers. This
classification scheme is predicated on work actively being conducted on a scheduling tech-
nique that quantifies the effect of task preemption and blocking, behavior fundamental to
the concept of parallelism in Ada. In a corollary report [Borger 89], a schedulability analysis
of the INS is described within the framework of the task set developed in this top-level
design. (<.r\\

The Inertial Navigation System (INS) Simulator application [Meyers 88a] consists of two programs

executing on separate computers: the INS simulator program [Meyers 88b] and the external computer

system (EC) program [Meyers 88c]. Since the principal function of the EC is to act as a test driver for

the operation of the INS simulator, the role of the EC will not be discussed any further in this docu-

ment. A detailed description of the requirements for the simulator application is presented in the

Behavioral Specification for the INS [Landherr 891.

The requirements for this development include:

" Adopting Ada concurrency primitives for the software implementation. In isolated in-
stances, alternative techniques may provide better performance in the face of real-time
constraints. Selected alternatives may take the form of operating system primitives or
assembly language routines.

" Using Incremental development to explore the solution space for the most robust im-
plementation. Examples of two principal areas for prototyping are:

1. Concurrency architecture-seek to maximize processor utilization (i.e. efficient
use of available horsepower) while retaining task schedulability for process dead-
lines.

2. External interfaces-seek to maximize the efficiency of device communications in
real-time.

* Reusing development software for the external computer system (EC) and in areas
where a common pattern of functionality is observed.

The goals for this investigation are:

CMU/SEI-89-TR-38 3



* Select a representative application (e.g., strict timing demands, mix of periodic and
event-driven process requirements: limited memory resources, error handling, low-level
I/O, and interrupts) as an ongoing Ada artifact for experimentation in this domain. Make
explicit use of Ada tasks within the real-time design.

" Apply any relevant practical results being produced by the real-time scheduling research
community.

" The INS simulator must satisfy a set of timing requirements that are similar to a real
world INS with respect to data updating, message transmission, and message reception.

This document discusses the top-level design of the application from three points of view reflecting

different perspectives: data flow and transformation, the concurrency and control perspective (Ada

tasking) and modularization (Ada packaging). The effort at improving INS performance, allied with

advances in schedulability research by the SEI Real-Time Scheduling in Ada (RTSIA) Project have

exposed some promising alternative strategies in hard real-time software design. The changes which

are inevitably incurred by the adoption of a new paradigm are reflected in this update. Since the

intention of the REST Project is to implement the INS Simulator on more than one computer and

runtime system, the top-level design description presents the INS Simulator program from an abstract

perspective and in a general manner. Design aspects which are specific to a particular implemen-

tation will be described in the detailed design.

The top-level design document contains three chapters:

1. Data flow analysis: describes the overall flow of data in terms of data stores, data
transforms, and the data flows between stores and transforms.

2. Concurrency and control: describes the real-time design and motivates the concur-
rent threads of processing and control (i.e., the tasking structure).

3. Packaging: defines the top-level packages grouped within functional "subsystems,"
their interdependencies, and task containment.

The remainder of the introduction is devoted to a brief tutorial on inertial navigation aids. It covers the

purpose of inertial navigation aids, an operational description, and a list of INS elements which have a

correspondence in the simulation.

1.0.1. Inertial Navigation Overview

Open-ocean navigation is a deceptive and complex problem. The deceptiveness exists because

routine, insignificant errors in navigation can propagate to enormous proportions. It is complex be-

cause, unlike land movement, the only reliable point of reference is a clear view of the night sky. The

4 CMU/SEI-89-TR-38



classic tools of the trade: a compass, sextant and stellar charts, remain adequate for gauging location

and direction of travel at sea, but are insufficient to sustain the requirement for rapid, precise, around-

the-clock, all-weather navigation aids. Through advances in technology, modern tools have evolved

to replace the earlier manual techniques with computer-intensive systems operating under the stress

of hard real-time response. Since the current generation of naval vessels depends upon accurate,

split-second guidance, modern inertial navigation systems have become a mission-critical component

of fleet operations. When we focus on the INS problem of continuously locating and tracking vessels

over vast distances, the solution requires a considerable amount of shipboard distributed equipment,

including one or more gyroscopes, various motion sensors, and computers for performing calculation

and communications. Data acquisition of detected changes in vessel movement and sea state must

be periodically sampled in real-time. Additional inputs are typically commanded changes in course

and speed. Reducing the data stream to a useful form requires rapid calculation of the ship's

smoothed attitude composed of ship's motion (see Figure 1-1, 1-2, and 1-3) with six degrees of

freedom plus velocity/acceleration components. Once attitude has been resolved to a fixed stable

platform, navigation computations follow to determine the ship's current position in latitude and Ion-

gitude, and surface velocity. Navy vessels commonly distribute the output of the INS to many on-

board users: the Navigator's Plotter-Board for planning tactical maneuvers, the Navy Tactical Data

System (NTDS) for secure-link communication of the ship's global-position to other fleet air/sea units,

and finally, as a stable platform for the various onboard weapons systems.

ROLL

Figure 1-1: INS Simulator: Ship's Motion: Roll, Heave, Sway

CMU/SEI-89-TR-38 5



In summing up, the INS simulator described here models the behavior of each of the ship's defined

independent motions (depicted and enumerated below) through the use of uncoupled-sinusoids:

1. pitch - an angular rotation of the ship identified in Figure 1-2
2. roll - an angular rotation of the ship identified in Figure 1-1
3. yaw - an angular rotation of the ship identified in Figure 1-3
4. surge - a linear displacement of the ship identified in Figure 1-2
5. heave - a linear displacement of the ship identified in Figure 1-1
6. sway - a linear displacement of the ship identified in Figure 1-1

The reader should note that all rotational and translational motions are measured with respect to the

ship's center of gravity - G.. The linear distance between Gc and a ship's motion sensor must be

factored into the 3-vector calculations as a lever arm constant. Each motion parameter then is com-

posed of the following elements:

" amplitude - in degrees of angular rotation or feet of displacement
* frequency - in radians/sec
" phase - in degrees of angular offset

GPITCH -

line

Figure 1-2: INS Simulator: Ship's Motion: Pitch, Surge

Other principal values computed by the INS are as follows:

* Heading - the ship's current direction of forward movement, taking into account Course
(commanded direction of travel) and Yaw (see Figure 1-3) measured in degrees

* List, the ship's deviation from vertical, when at rest, about the roll axis, due to center of
gravity displacement measured in degrees

* Trim, the ship's fixed deviation from the horizontal about the pitch axis, due to center of
gravity displacement measured in degrees

6 CMU/SEI-89-TR-38



e Ocean Velocity, North, East components measured in knots (e.g., nautical miles per
hour

o Ship Speed, measured in knots (nautical miles per hour)
o Ship Velocity, North, East, Vertical components measured in knots
e Velocity Integrals, the ship's cumulative distance covered, measured in feet
* Latitude and Longitude, the ship's global coordinate location measured in degrees,

minutes, and seconds

N

Heading

Course

Figure 1-3: INS Simulator: Ship's Motion: Yaw with Heading and Course Indicated

CMU/SEI-89-TR-38 7
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2. Data Flow Analysis
This chapter describes the overall flow of data through the INS simulator program. Details include:

* data-flow diagrams
* purpose and content of the principal data stores
* function and constituent data flows of the principal data transforms

This chapter is the first step in creating a program design that meets the requirements of

[Meyers 88b] and [Landherr 89]. It thus forms the basis for subsequent chapters.

Clock

Motion %Fo.m.ttd

oaSimulator "
USER Keyboard INPUT ATTITUDE OUTPUT computer pcket

POSITION Sse *-*-C

Y ELOCITY Swi Inefc

Figure 2-1: INS Simulator: High-Level Data Flow Diagram

The overall flow of data through the INS simulator program is illustrated in progressive detail by the

following data-flow diagrams. Figure 2-1 depicts the system at the highest level. From this perspec-

tive we can see the overall architecture of INS and begin to identify its asynchronous components.
The appearance of five transforms, four of which represent possible devices, indicates some

independence in the threads of execution. At this point, however, we will not consider concurrent

behavior but restrict our discussion to the principal data paths. The major transforms and data flows

are as follows:
CMUISEI-89-TR-38 9



* Keyboard: User man-machine interface (MMI) commands in the form of a character
string are entered at the keyboard. Valid commands encompass the setting of simulator
scenario, seastate and other motion parameters into the input store. Command string S
characters are echoed to the display screen. On user request, current parameters may
be retrieved from the input store for Screen display.

" Clock: Simulated time is generated for use by the motion simulator, the external com-
puter system interface, and the user console display screen.

" Motion simulator: Input store parameters are used by the motion simulator to compute
new attitude, position, and velocity results, which are then deposited into the output a
store. The results from the previous calculation of the motion simulator are retrieved from
the output store and used for update to the next simulator state.

* External computer system (EC) Interface: Motion simulator results are retrieved from
the output store and message-formatted in anticipation of periodic output to the EC. EC
commands are received and validated with a response when indicated by the require-
ments detailed in [Meyers 88c].

• Screen: The simulation parameters and results are received at periodic intervals for
display at the user MMI. Simulation alerts are received from the keyboard and EC inter-
face for display to the user. Communications status is received from the EC interface for
screen display.

In transitioning from the first abstraction of the solution in Figure 2-1 to the greater level of detail

depicted in Figure 2-2, we can identify a series of software design choices made to accommodate the

behavioral requirements identified in [Landherr 89]. Each "cloud" represents transforms and stores

from the previous Figure 2-1 and encompasses internal data transforms and stores within it. Any

implementation-dependent features continue to remain hidden as an aid in target processor por-

tability. While hidden dependencies might entail additional architectural features, at this juncture the

intent is to restrain the design to a common structure. A method referred to as Design Approach for

Real-Time Systems (DARTS) [Gomaa 84, guided the INS data flow analysis. The data flow and data

transform elements of the second, and final, data flow diagram are described in the following sec-

tions.

2.1. Data Stores
The nine major data stores of the INS Simulator consists of two data constant tables:

e ScenarioTable - ship's navigation-preconditions store
* SeaStateTable - ship's attitude-preconditions store

four shared-resource persistent data tables:

" InputParameterTable - simulation inputs store
* SimulationResultsTable - simulation outputs store
" SystemDataTable - simulation time store

10 CMU/SEI-8,-TR-38
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Figure 2.2: INS Simulator: Low-Level Data Flow Diagram
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* Fault_Table - simulation faults store

and three data queues: B
" Keyboard_InputQueue - decouple arrival of user input commands from command

processing
" PendingAlerts_Queue - decouple simulation alert arrivals from display processing
" Output.MessageBuffers_Queue - decouple simulation periodic output message ar-

rivals from communications processing

A description of the contents of the INS data stores is provided in the following sections.

2.1.1. Scenario Table

A startup simulation state can be chosen with the ScenarioTable which contains 15 user-selectable

sets of the following static parameters (subcomponents shown as above):

Lever Arm Constants
(3-coordinate distance of WSN-5 from ship's center of gravity)

Ship List
Ship Trim
Initial Ship Course
Initial Ship Speed
Initial Latitude
Initial Longitude
Ocean Current

East
North

The constant ScenarioTable provides the following Output Data Flows:

(ScenarioTable --(2a)--> SimulationResultsTable)

(ScenarioTable --(2b)--> InputParameterTable)

The first data flow (2a) consists of the initial ship's navigation state selected by default. The data

represents an initial motion simulator output prior to the first simulation-generated results. The second

data flow (2b) consists of the same initial ship's navigation state selected either by default or by the

most recent user command of the SELECT SCENARIO for motion simulator input.

12 CMUlSEI-89-TR-38



2.1.2. SeaState Table

The SeaStateTable contains 7 user-selectable sets of initial ship motion parameters. Each of the

motion parameters is a composite variable in three parts (subcomponents are shown in bold script):

Surge
amplitude
frequency
phase

Heave
amplitude
frequency
phase

Sway
amplitude
frequency
phase

Roll
amplitude
frequency
phase

Pitch
amplitude
frequency
phase

Yaw
amplitude
frequency
phase

The constant Sea_StateTable provides the following Output Data Flow:

(SeaStateTable --(2c)--> Input-Parameter Table)

This data consists of a single set of motion parameter constants to be used by the attitude, position,

and velocity processes of the motion simulator. The parameters reflect the initial default set or the

most recent user command of SELECT SEASTATE.

2.1.3. Input Parameter Table

The Input ParameterTable contains starting simulation values to be employed as parameter inputs

to the motion simulation calculations. Note that the set of input parameters builds upon the initial

sea-state and scenario and incorporates other variables which record state transitions resulting from

user commanded changes in navigation. The input parameters are also displayed at the INS screen

periodic display window:

CMU/SEI-89-TR-38 13



Surgeamplitude

frequency
phase

Heave
amplitude
frequency
phase 8

Sway
amplitude
frequency
phase

Roll
amplitude
frequency
phase

Pitch
amplitude
frequency
phase

Yaw
amplitude
frequency
phase
Lever Arm Constants

Forward
Right
Down

Ship List
Ship Trim
Ocean Current

East
North
Ship CourseNew Ship Course

Turn Rate
New Ship Direction
Ship Speed

New Ship Speed
Speed Change Period

2.1.4. Simulation Results Table

The SimulationResults_Table contains time-dependent variables produced by the motion simulation

calculations. The results will be used in building the attitude and navigation periodic data messages.

The results are also used to recalculate simulation results in the next update period, and are addition-

ally displayed at the INS screen periodic display window. Note that the ship motion parameters Pitch,

Roll, and Yaw are now calculated (discrete) values:

14 CMU/SEI-89-TR-38



Attitude
Heading
Pitch
Roll
Yaw
Heading Rate
Pitch Rate
Roll Rate
Yaw Rate

Displacement
Surge
Heave
Sway

Velocity
North
East
Vertical
Velocity Integral North
Velocity Integral East

Position
Latitude
Longitude

Speed
Speed Time
Speed State

(Static or Changing or RequestingChange)
Course
Course Time
Course State

(Static or Changing or RequestingChange}

2.1.5. System Data Table

The SystemDataTable contains system-wide constants, state variables, and operations returning

data (15,17) such as:

Initial Time (Start GlT)
Time of Gyro Reset (TGR)
Simulation Time (Current GMT)
Time of Last Start-Of-Message (SOM GMT) signal

The SystemData_Table receives the following Input Data Flow:

(RealTime_Clock --(15a)--> SystemDataTable)

This data consists of CLOCK "ticks" to be used as SimulatedTime by other processes within the INS

40 Simulator.

0 CMU/SIEI-89-TR-38 15



2.1.6. Fault Table

The FaultTable contains data (4) in the form of a multi-element list with each element structured as

follows:
Fault

boolean
value

The 19 elemental faults include:

Heading, Pitch, Roll,
Heading_Rate, PitchRate, RollRate,
VerticalVelocity, EastVelocity, NorthVelocity,
Speed, Latitude, Longitude, East Current, NorthCurrent,
TGR, CurrentGMT, SOMGMT, DistanceNorth, Distance_East

2.1.7. Keyboard Input Queue

The KeyboardInputQueue contains up to 128 characters from the operator input stream (18) des-

tined to be echoed at the terminal screen command window.

2.1.8. Output Message Buffers Queue

The OutputMessageBuffers_Queue contains INS output periodic messages for transmission to the

external computer system, with any specified faults also reflected in the data.

2.1.9. Pending Alerts Queue

The PendingAlertsQueue has up to 50 entries in order of priority. Each entry consists of:

Alert identification (importance ordered) •
Time at which alert was issued

2.2. Data Transformations

Each of the data flows and data transforms depicted in Figure 2-2 are briefly described below. De-

tailed requirements can be obtained from [Landherr 891. Note that the data flow numbers correspond

to those given in Figure 2-2.

2.2.1. Process Keyboard Commands

2.2.1.1. Data Flow Inputs

(KeyboardInput_Queue --(lb)--> ProcessKeyboardCommands)

This data flow is simply a queued stream of ASCII characters typed by the operator on the keyboard.

(InputParameterTable --(2o)-> ProcessKeyboard_Commands)

16 CMU/SEI-89-TR-38



This data flow consists of the feedback of the numerical values of input parameters selected by the

operator in a SHOW PARAMETER command.

2.2.1.2. Data Transform

The ProcessKeyboardCommands data transform gathers incoming character strings from the

keyboard input queue, echoes them to the screen, assembles them into command strings, parses the

strings into commands, interprets the command syntax, and performs the actions specified by the

commands.

2.2.1.3. Data Flow Outputs

(ProcessKeyboardCommands --(2d)--> lnputParameter_Table)

This data flow consists of individual parameter values supplied by the operator as in the SET

PARAMETER, INCREASE SPEED TO, SELECT SCENARIO, or SELECT SEASTATE commands.

(ProcessKeyboardCommands --(4a)--> FaultTable)

This data flow consists of individual numerical values supplied by the operator in FAULT commands.

(ProcessKeyboardCommands --(11a)--> PendingAlertsQueue)

This data flow consists of individual numerical values representing simulation alerts.

(ProcessKeyboardCommands --(9)--> ProcessCommand_Window)

This data flow consists of isolated characters echoing the keystrokes of the user when typing com-

mands at the keyboard. The data may also be a string of control characters to edit the command line

(e.g., backspace).

(ProcessKeyboardCommands --(10)--> ProcessCommandWindow)

This data flow consists of a string image of the numerical value of a SHOW PARAMETER result (see

2e above) intended for display at the screen command window. The parameter string will be con-

catenated after the last echoed command character (9 above).

2.2.2. Update Attitude and Heading

CMU/SEI-89-TR-38 17



2.2.2.1. Data Flow Inputs

(Input_Parameter_Table --(2f)--> UpdateAttitude andHeading) S
This data flow consists of the various ship simulation parameters, such as SEASTATE and

SCENARIO, required by the motion simulator's update attitude and heading process.

(System_DataTable --(15b,17a)--> UpdateAttitude_andHeading)

This data flow consists of the current value of simulation time (elapsed interval) required by the

motion simulator's update attitude and heading process plus any required simulation constants (note

that the mechanism for updating system time is target dependent and will involve interfacing to the

system clock or a separate real-time clock.)

(SimulationResultsTable --(3f)--> UpdateAttitudeandHeading)

This data flow consists of numerical values for simulation results previously calculated by the motion

simulator data transforms and required as an intermediate value by the transform for a succeeding

update.

2.2.2.2. Data Transform

The UpdateAttitudeand_Heading data transform periodically calculates the simulated ship rota-

tional and translational motions. The data transform uses values from the system data and input

parameter tables to calculate new pitch, roll, yaw, and heading values for entry into the simulation

results table. The data transform also uses values previously calculated by the Update-Velocity data

transform (ship's course), from the results table, as part of the update process.

2.2.2.3. Data Flow Outputs

(UpdateAttitudeandHeading --(3a)--> Simulation_ResultsjTable)

This data flow consists of the numerical values for simulation results (ship's heading, pitch, roll, and

yaw with associated change rates) calculated by the Update AttitudeandHeading process of the

motion simulator. S
2.2.3. Update Position
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2.2.3.1. Data Flow Inputs

(InputParameterTable --(2g)--> Update-Position)

This data flow consists of the various ship simulation parameters, such as SEASTATE and

SCENARIO, required by the motion simulator's update position process.

(SystemDataTable --(15c,17b)--> Update_Position)

This data flow consists of the current value of simulation time (elapsed interval) required by the

motion simulator's update position process plus any required simulation constants.

(Simulation Results Table --(3g)--> Update Position)

This data flow consists of numerical values for simulation results previously calculated by the motion

simulator processes UpdateAttitude_andHeading and Update-Position, and required as an inter-

mediate value by the data transform for a succeeding update.

2.2.3.2. Data Transform

The Update_Position data transform periodically calculates the simulated ship motion. The transform

uses values from the SystemDataTable and Input_ParameterTable to calculate new values of

latitude and longitude for entry into the SimulationResultsTable. In addition, the data transform

uses previously calculated values, by UpdateAttitudeandHeading, Update-Position, and

Update-Velocity, from the SimulationResultsTable as part of the update process.

2.2.3.3. Data Flow Outputs

(Update-Position --(3b)--> SimulationResultsTable)

This data flow consists of the numerical values for simulation results calculated by the update position

process of the motion simulator.

2.2.4. Update Velocity

2.2.4.1. Data Flow Inputs

(InputParameterTable --(2h)--> Update-Velocity)

This data flow consists of the various ship simulation parameters, such as SEASTATE and

SCENARIO, required by the motion simulator's update velocity process.

(SystemDataTable --(15d,17c)--> Update-Velocity)
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This data flow consists of the current value of simulation time (elapsed interval) required by the

motion simulator's velocity subprocess plus any required simulation .onstants. S

(Simulation Results Table --(3h)--> Update Velocity)

This data flow consists of numerical values previously calculated by the motion simulator processes

and required as an intermediate value by the transform for a succeeding update.

2.2.4.2. Data Transform

The Update-Velocity data transform periodically calculates the simulated ship motion. The data

transform uses values from the System_DataTable and the InputParameterTable to calculate new

values for entry into the SimulationResultsTable. In addition, the data transform uses previously

calculated values, by Update_Attitude and_Heading, and Update-Velocity data transforms, from the

SimulationResultsTable as part of the update process.

2.2.4.3. Data Flow Outputs

(UpdateVelocity --(3c)--> SimulationResultsTable)

This data flow consists of the numerical values calculated by the update velocity process of the

motion simulator.

2.2.5. Encode Attitude Messages

2.2.5.1. Data Flow Inputs

(FaultTable --(4b)--> EncodeAttitudeMessages) •

This data flow consists of fault values to be inserted into motion simulator attitude periodic output data

messages.

(SystemData_Table --(15e)--> EncodeAttitudeMessages) 9
This data flow consists of the current value of GMT and TGR required by the

EncodeAttitudeMessages data transform.

(SimulationResults_Table --(3d)--> EncodeAttitudeMessages)

This data flow consists of the numerical values that are required to assemble the attitude periodic

data messages.
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2.2.5.2. Data Transform

The EncodeAttitudeMessages data transform assembles data messages into the format specified

in [NAVSEA 82], overwriting message fields with any values currently in the fault buffer.

2.2.5.3. Data Flow Outputs

(EncodeAttitudeMessages - (5a)--> OutpuLMessageBuffersQueue)

This data flow consists of Attitude periodic messages.

2.2.6. Encode Navigation Messages

* 2.2.6.1. Data Flow Inputs

(Fault-Table --(4c)--> EncodeNavigationMessages)

This data flow consists of fault values to be inserted into motion simulator navigation periodic output

data messages.

(SystemDataTable --(15f)-->. EncodeNavigationMessages)

This data flow consists of the current value of GMT and TGR required by the encode navigation

0 messages data transform.

(SimulationResultsTable --(3e)--> Encode_AttitudeMessages)

This data flow consists of the numerical values that are required to assemble the navigation periodic
data messages.

2.2.6.2. Data Transform

The encode navigation messages transform assembles data messages into the format specified in

[NAVSEA 82], overwriting message fields with any values currently in the fault buffer.

2.2.6.3. Data Flow Outputs

(EncodeNavigationMessages --(5b)--> OutputMessageBuffersQueue)

This data flow consists of navigation periodic messages.

2.2.7. Process Comms Link

2.2.7.1. Data Flow Inputs

(OutpuLMessageBuffers_Queue --(5c)--> ProcessCommsLink)

This data flow consists of complete, formatted, attitude and navigation periodic data messages, pos-

sibly reflecting injected fault values.
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(EC Interface -(7)--> ProcessCommsLink)

This data flow consists of external function codes -nd blocks of message words.

2.2.7.2. Data Transform

The Process Comms Link transform performs the following functions:

communicates with the external computer system (EC) via a defined [Meyers 88b] mes-
sage transfer protocol over the [NAVSEA 82] NTDS Parallel Interface. 0

* receives input messages from the external computer and passes them to the message
validator

* fetches messages from the output message buffer and sends them to the external com-
puter

* generates alerts to be issued to the screen when certain interface conditions are de-
tected

2.2.7.3. Data Flow Outputs

(ProcessComms_Link --(6)-> EClnterface)

This data flow consists of external function (EF) codes and blocks of message words. External func- 0

tions are communications protocol signals; their sole purpose is to govern the orderly flow and pro-

gression of data I/0.

(ProcessCommsLink --(8)--> Validate_Messages)

This data flow consists of certain fields of the input messages which must be validated. A field is an

isolated unit of data, encompassing one or more bits, with a specified location within the prescribed

format of a message. Validation of a field implies a test for legality based on some discrimination

technique prescribed by the communications protocol.

(ProcessCommsLink --(11b)--> PendingAlerts_Queue)

This data flow consists of packets of coded data identifying an alert and specifying the time of occur-

rence of the condition that triggered the alert.

(ProcessCommsLink --(12)--> ProcessSystem_StatusWindow)

This data flow consists of a single coded value which specifies the newly changed state of the com-

munications interface (i.e., up or down).
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2.2.8. Validate Messages

2.2.8.1. Data Flow Inputs

(ProcessCommsLink --(8)--> ValidateMessages)

See Process_Comms_Link subsection.

2.2.8.2. Data Transform

The validate messages transform checks certain fields of each input message. If an error is found,

an alert is issued.

2.2.8.3. Data Flow Outputs

(Validate-Messages --(11c)--> PendingAlerts_Queue)

See ProcessCommsLink subsection.

2.2.9. Update Periodic Display

2.2.9.1. Data Flow Inputs

(InputParameter_Table --(21)--> UpdatePeriodicDisplay)

This data flow consists of simulation values reflecting the motion simulator parameters to be used in

update processing.

(SimulationResultsTable --(31)--> UpdatePeriodicDisplay)

This data flow consists of simulation values reflecting the motion simulator results of update proc-

essing.

(SystemDataTable --(15g)--> Update_Periodic_Display)

This data flow consists of the current value of Greenwich Mean Time (GMT) and Time of Gyro Reset

(TGR) required by the UpdatePeriodic_Display data transform.

2.2.9.2. Data Transform
The Update_PeriodicDisplay data transform is a periodic process which gathers data from both the

parameter and results table for eventual display of the simulation state on the periodic window of the

operator screen.
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2.2.9.3. Data Flow Outputs

(Update_PriodicDisplay --(16)-> ProcessPeriodicWindow)

This data flow consists of simulation state values from the lnputParameterTable, the

SimulationResultsTable, and the SystemData_Table.

2.2.10. Process Command Window •

2.2.10.1. Data Flow Inputs

(ProcessKeyboardCommands --(9)--> ProcessCommandWindow)

See ProcessKeyboardCommands subsection.

(ProcessKeyboard_Commands --(10)--> ProcessCommandWindow)

See ProcessKeyboardCommands subsection.

2.2.10.2. Data Transform

The ProcessCommandWindow transform accepts characters from the

ProcessKeyboard_Commands data transform (including line characters) and arranges for the dis-

play of the (edited) command line by formatting standard packets for the ControlScreen data trans-

form to be appended to the command line for window display.

2.2.10.3. Data Flow Outputs

(Process_CommandWindow -(13a)--> ControL.Screen)

This data flow consists of packets of coded screen coordinates and text strings that define data to be 0

displaycu on the console screen.

2.2.11. Process Periodic Window

2.2.11.1. Data Flow Inputs

(UpdatePeriodicDisplay --(16)-> ProcessPeriodicWindow)

See ProcessPeriodic_Display subsection.

2.2.11.2. Data Transform

The ProcessPeriodicWindow transform formats standard packets, from values obtained from the

UpdatePeriodic..Display, for output in the periodic display window.

24 CMU/SEI-89-TR-38



2.2.11.3. Data Flow Outputs

(ProcessPeriodic_Window -(13b)--> Control_Screen)

See Process_Command_Window subsection.

2.2.12. Process Alert Window

2.2.12.1. Data Flow Inputs

(PendingAlertsQueue --(1id)--> ProcessAlertWindow)

This data flow consists of alert display strings.

2.2.12.2. Data Transform

The ProcessAlert_Window transform accepts individual alerts from the pending alerts queue and

arranges for them to be displayed in the alert window by formatting standard packets for the

ControlScreen data transform.

2.2.12.3. Data Flow Outputs

(Process_AlertWindow --(13d)-> Control_Screen)

See ProcessCommandWindow subsection.

2.2.13. Process System Status Window

2.2.13.1. Data Flow Inputs

(ProcessCommsLink --(12)--> ProcessSystemnStatus_Window)

See ProcessCommsLink subsection.

2.2.13.2. Data Transform

The ProcessSystemStatusWindow data transform accepts data from the ProcessCommsLink

data transform which represents changes in the communications state and arranges for these values

to be displayed in the system state window by formatting standard packets for the ControlScreen

data transform.

2.2.13.3. Data Flow Outputs

(ProcessSystemStatusWindow --(130)--> ControlScreen)

See ProcessCommandWindow subsection.
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2.2.14. Control Screen

2.2.14.1. Data Flow Inputs

(ProcessCommand_Window --(13a)--> Control-Screen)

See Process_CommandWindow subsection.

(ProcessPeriodic_Window -(13b)--> ControlScreen)

See Process Command Window subsection.

(ProcessSystemStatusWindow --(13c)--> ControlScreen)

See Process_SystemStatus_Window subsection.

(ProcessjAJertWindow --(13d)--> ControlScreen)

See Process_AlertWindow subsection. A

2.2.14.2. Data Transform

The ControlScreen data transform accepts packets from the previous four window processors,

which contain a string of display characters plus an embedded escape sequence that specifies

screen location, and writes the packet within the designated window.

2.2.14.3. Data Flow Outputs

(Control_Screen --(14)--> Screen)

This data flow consists of a stream of ASCII characters, including control characters to position the

cursor.
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3. Concurrency and Control
The purpose of this chapter is to provide the reader with an appropriate context for the development

of a common (i.e., target independent) real-time software design for the INS. A starting point will be

the data flow structure developed in the preceding chapter (see Figure 2-2). The approach will

expose concurrent behavior as early in the problem analysis as possible. The next section employs a

strategy for devising the real-time architecture of the INS from the data flow analysis. A typical first

step involves creating a set of criteria for identifying a task set within the Low-Level Data Flow

Diagram (subsequently referred to as the DFD,). The succeeding steps apply the criteria to the INS

analysis (Figure 2-2) to render a design which satisfies the real-time requirements of the system.

3.1. Criteria for Converting Data Flows to Tasks
When considering possible concurrency, [Gomaa 84] and [Nielson 88] propose a similar rationale for

decomposing and grouping data transforms and stores. A heuristic approach is adopted employing

rules-of-thumb to decide which data transforms and which data stores can properly be considered for

division into separate threads of execution. With a data transform, the requirement for independent

(i.e., asynchronous) operation, whether it be periodic or sporatic in nature, is the motivating factor for

creation of a task. However, not all tasks can be considered purely independent; when real-time

synchronization is required, such as with case sharing resources, then a mediating agent must be

created to provide this service. Therefore, the sharing of data stores between client tasks must occur

through the synchronized actions of a third-party task which monitors access to the data store. A

clarifying point should now be stated: whereas analytical techniques (e.g., closed-form solutions are

achievable) for scheduling a task set with analyzable properties, analysis does not speak to the initial

derivation - its composition or numbers. These must be determined with heuristic methods. There-

fore, in the context of recent experimentation at the SEI on analyzable task sets [Borger 89] the

following conversion rules shall be applied:

3.1.1. Data Transforms
* Random data flows create aperiodics
* Regular data flows create periodics

Data flows between an interrupting device and a data transform can be modeled as asynchronous
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requests upon an aperiodic task. External stimulus frequently occurs at random intervals [Poisson

arrivals] and is therefore a source of asynchronous behavior (even if the interrupts are regular in

nature we may treat them as random as long as the minimum interarrival time is known.) Data trans-

forms which execute time-critical functions at random intervals, often in response to stimulus due to

data flowing from alternative data transforms, can also be modeled as aperiodic tasks. Conversely,

the repeated execution of data transforms at regular intervals is a criterion for a periodic task.

3.1.2. Data Stores

In addition to the task criteria for data transforms, real-time systems often make use of shared

variables through data stores that provide concurrent access:

* shared resource will be converted to a server task to model concurrent

synchronization.

Applying the rules-of-thumb must also allow for a rational handling of data transforms and stores

which fail the test:

* sequential execution of data transforms
* temporal ordering of data transforms
- sequential access to data stores

If a data transform does not satisfy the criteria for a task then it will execute in the thread of control of

another task. This can occur either of two ways: first, via a data flow to a called subprogram (i.e.,

"sequential cohesion"); second, through the combining of data transforms for time-ordered execution

(referred to by Gomaa and Nielson as "temporal cohesion"). Structured design rules treat temporal 5

behavior as inappropriate (low in cohesiveness) for module construction, but the behavior of tasks is

dynamic in time rather than static; therefore temporal bindings are valid considerations. A temporal

binding is useful when events occur in a predefined order, thus allowing encapsulation within a single

thread of execution which is not truly data coupled. If a data store does not satisfy the criteria for a

task then it will be treated as a resource characterized by sequential access.
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3.2. Creating An Analyzable Task Set For The INS
The work cited in [Borger 89] offers a detailed explanation of an analytical approach to hard real-time

scheduling founded on a partition of, and interaction between, tasks which can be modeled as

periodics, aperiodics, and servers. The authors apply the principles of this method to a description

and assessment of the INS task set. Rather than repeat this material, Inertial Navigation System

Simulator Program: Top-Level Design (hereafter referred to as Top-Level Design will restrict itself to

a discussion of how INS tasks are created by application of the criteria mentioned in Section 3.1,

(based on an analysis of the INS requirements represented graphically in Figure 2-2,) and to an

explanation of the theory and supporting principles by which a predictable analysis is possible.

Since no well-defined rules exist for mapping the task criteria to the INS analysis, techniques must be

carefully crafted to make the candidate selection process understandable. First, to reduce the com-

plexity at each design step, individual "clouds" (shaded areas in Figure 2-2) are isolated and treated

as closely bound ensembles or "subsystems." This approach, while convenient from the developer's

perspective (and fairly common in practice), is founded on a) the functional cohesiveness of the

constituent data transforms, and b) a straightforward producer-consumer data flow between data

transforms and stores. This is an important abstraction for identifying parallelism because the separa-

tion of concerns allows derivation of tasks in any particular subsystem to be considered for their

analyzable properties alone and apart from the order in which other subsystems are treated. Yet,

concurrent behavior may overlap the functional structure of subsystems. Tasks can merge functional

groupings within a single thread of execution if the task criteria fails and sequential or temporal

cohesion are the primary considerations. For instance, both the keyboard and screen subsystems

overlap at the window processing interface. In this case, a data coupling implies sequential cohesion

as the criterion. Within the EC Subsystem, ProcessCommsLink performs both sending and receiv-

ing of messages with the EC over the NTDS Parallel Interface. Since these functions cannot occur

simultaneously they will be executed within a single thread and the ordering points to temporal cohe-

sion as the primary criterion. To aid this presentation in the Top-Level Design, two methods have

been adopted. First, an itemization and explanation of the chosen task criteria is shown for each of

the DFD elements. Equivalence of tasks to data transforms and stores is identified with an "<=>"

construction. The flows between tasks are treated as channels in a producer-consumer context for
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data movement. Data entering a subsystem is followed through each task, undergoing one or more

transforms, until it exits the subsystem. Second, a diagram of the subsystem elements is illustrated as

an expanded, or "telescoped," segment of Figure 2-2 (image reduced in the upper-left hand side of

each figure) with a visual mapping of tasks to data transforms and stores. The tasks are illustrated as

shaded parallelograms, a widely adopted modeling technique within the Ada literature. Each task,

shown with a "clouded" center, is a paradigm of dynamic behavior. Ada tasks encompass one or

more DFD elements while simultaneously connoting separate threads of concurrent execution. Ada

tasks, while subject to the concurrency primitives of the language, have a predictable behavior when

formed according to a restricted set of analyzable rules (discussed more fully in Section 3.3 and in

detail in [Borger 89]). Employing the Ada task icon as a "black-box" with an open window into the

interior is an information-hiding mechanism for depicting some internal details and delaying others for

a later design decision. The DFD elements within the black-box are illustrated as being "lassoed"

from within it, or looped by it, to show its capture within the thread and separation from other data

transforms and stores.

In applying the criteria to the INS requirements data flow analysis, the following concurrency deriva-

tion is obtained:

3.2.1. Keyboard Tasks

As illustrated in Figure 3-1, three tasks replace related data transforms and stores:

" aperiodic task KeyboardtSR <=> data transform Keyboard device
" server task InputBufferMonitor <=> data store Keyboard_Input Queue
" aperiodic task CommandProcessor <=> data transform

ProcessKeyboardCommands and data transform ProcessCommandWindow

The KeyboardlSR is a producer which places characters (1 a) received from the keyboard into the

queue of the InputBufferMonitor. Note that the ProcessKeyboardCommands data transform and

the ProcessCommandWindow data transform execute within the thread of the

CommandProcessor task. The CommandProcessor task is a consumer of queued characters (1b)

from the InputBufferMonitor. The CommandProcessor also produces operator entered simulation

parameters (2d) for consumption by the InputParameterTable and consumes simulation
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parameters (2e) produced by the InputParameterTable as a result of the SHOW command for

example. The CommandProcessor produces printable characters (9) for a transform into single

character display packets (13a) for consumption by the Control_Screen data transform at the com-

mand window. The CommandProcessor also produces simulation parameter character strings (10)

as display packets (13a) for consumption by the ControlScreen at the command window.

3.2.2. Screen Tasks
As illustrated in Figure 3-2, four tasks replace screen related data transforms and data stores:

" aperiodic task ScreenISR <=> data transform Screen device
* server task AlertsMonitor <=> data store Pending_Alerts_Queue and data transform

ProcessAlertWindow
" aperiodic task ScreenController <=> data transform ControlScreen
" periodic task Periodic.DisplayUpdater <=> data transform UpdatePeriodicDisplay

and data transform ProcessPeriodic_Window

Note that the transforms UpdatePeriodicDisplay and ProcessPeriodicWindow execute sequen-

tially every 1024 milliseconds within the thread of the PeriodicDisplayUpdater Task. The

PeriodicDisplayUpdater consumes data in the form of simulation parameters (2i) from the

Input_ParameterTable, simulation results (3i) from the SimulationResults_Table, and GMT plus

TGR (15g) from the SystemDataTable. The PeriodicDisplayUpdater produces a simulation state

(16) which it transforms into a display packet (1 3b) for the periodic window. The AlertsMonitor

synchronizes concurrent access to the PendingAlertsQueue, acting as a shared resource for multi-

ple clients. Alerts (11 a,1 b,1 1 c) are queued on arrival and dequeued (1 d) for transform to display

packets (13d) which are consumed by the ScreenController for display in the alert window. The

Screen_Controller consumes display packets (13a,13b,13c,1 3d) from a number of sources for output

of screen display characters (14) at designated windows.

3
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3.2.3. Parallel Interface Tasks

As illustrated in Figure 3-3, four casks replace data transforms and data stores involved in communi- S

cations with the external computer system over the [NAVSEA 82] NTDS Parallel Interface:

* aperiodic task CommsISR <=> data transform ECInterface device
" server task Comms_Controller <-> data transform Process_Comms_Link and data

transform ProcessSystemStatus_Window and data transform Validate-Messages
and data store Output_MessageBuffers_Queue

" periodic task AttitudeMessage_Sender data transform
AttitudeMesageSender

" periodic task Navigation_Message..Sender <=> data transform
Attitude_MessageSender •

The Attitude_MessageSender task executes periodically at a 16 Hz rate consuming simulation time

(15e) from the SystemDataTable, simulation results (3d) from the SimulationResultsTable, and

fault values (5b) from the FaultTable. The AttitudeMessageSender transforms these inputs into

encoded ship's attitude state information which it produces as a simulation results message (4a) for

consumption by the CommsController. The NavigationMessageSender executes periodically at a

1 Hz rate consuming simulation time (150 from the SystemDataTable, simulation results (3e) from

the SimulationResultsTable, and fault values (5c) from the FaultTable. The

NavigatonMessageSender transforms these inputs into encoded ship's navigation state informa-

tion which it produces as a simulation results message (4b) for consumption by the

CommsController. The CommsController consumes simulation results messages (5a,5b), queuing

them internally in the Output__Message_BuffersQueue, which it retrieves (5c) and produces as peri-

odic output messages (6) for consumption by the EC according to a synchronization protocol 0
(handshake) described in [NAVSEA 82] and event signaled by the CommsISR (not acting as a data

conduit). The CommsController consumes periodic input messages (7) from the EC according to the

same protocol with a waiting for event performed by the CommslSR. In addition, the

CommsController produces a communications state (12) which is converted into a screen display

packet (13) for consumption by the ScreenController with eventual output to a window on the

screen. The CommsController also produces simulation alerts (11) (based on detected event

changes during message communications) and input message values (8), which are validated, thus

34 CMU/SEI-89-TR-38



Atiue0esg

0Sne

~Messages

* Sender

Ad task Aperiod iodi

Figrem 33: P ralle Interface ReatdTak

01



producing simulation alerts (11) when an error is detected. Simulation alerts are consumed by the

AlertsMonitor.

3.2.4. Motion Simulator Tasks

As illustrated in Figure 3-4, three tasks replace data transforms related to simulating the motion of the

ship:

" periodic task Ship_AttiudeUpdater <,,> data transform is
Upate_AttltudeandHeadlng

" periodic task Shlp_PositlonUpdater <.> data transform UpdatePosliton
" periodic task Shlp_yeloclty_Updater <=> data transform UpdateVelocity

The ShipAttitudeUpdater executes at a periodic rate of close to 400 Hz, consuming simulation

parameters (2f) from the InpuLParameter_Table, calculating new values for ship's attitude, and pro-

ducing simulation results (3a) for consumption by the SimulationResultsTable.

The Ship_PositionUpdater executes at a periodic rate of 0.8 Hz, consuming input parameters (2g),

and intermediate results (3g), calculating, and producing new motion simulator values (3b) for con-

sumption by the ResultsTable_Monitor.

The ShipVelocityUpdater executes at a periodic rate of 24 Hz, consuming input parameters (2h),

and intermediate results (3h), calculating, and producing new motion simulator values (3c) for con-

sumption by the Results_TableMonitor. 0

3.2.5. Input Parameter Table Task

As illustrated in Figure 3-5, one task replaces the shared simulation input data store:

• server task ParmTable_Monitor <-> data store InputParameterTable

The InputParameter_Table data store is replaced by a single server task, the ParmTable_Monitor,

acting as a shared resource for multiple clients.
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3.2.6. Simulation Results Table Task

As illustrated in Figure 3-6, one task replaces the shared simulation output data store:

* server task ResultsTableMonItor c-> data store SimulatlonResults_Table

The SimulationResultsTable data store is replaced by a single server task, the results table moni-

tor, acting as a shared resource for multiple clients.

3.2.7. Remaining Data Stores
The Scenario-Table, SeaStateTable, SystemDataTable, and FaultTable are protected by ac-

cess protocols (conditional state dependencies) rather than by a server task. Thus, each of the above

tables is referenced and/or updated within the thread of the accessing task.
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3.3. A Schedulable Real-Time Architecture for the INS

The tasking structure derived in the previous section is applied within the framework of an analytical

concurrency model based on the Rate Monotonic Scheduling (RMS) algorithm. RMS was introduced

in a seminal paper by Liu and Layland [Liu 73] in which the authors showed that the scheduling of

tasks can be reliably predicted. RMS is essentially a toolkit for building closed-form solutions to real-

time software which has a basis of underlying periodicity. In [Borger 891, several techniques expand-

ing on RMS are applied to facilitate a scheduling of the INS Simulator. To give the reader a better

background for the aforementioned analysis the following section summarizes principle aspects of the

work.

3.3.1. Software Engineering Aspects
Since our principal concern is with the ability of a real-time INS task set to meet its specified dead-

lines, then, a scheduling of the tasks which makes this feasible is our primary objective. We employ

RMS for a number of reasons, some of which are related to 1) limitations within either the Ada tasking

paradigm or implementations (language rules for concurrency, the rendezvous model, timing

granularity, drift, and jitter), 2) the stringency of the real-time regime in which the INS must perform

(hard and soft deadlines, device interactions, performance reliability and maintainability), and 3) be-

cause of the advantages provided by RMS compared to the inflexibility of alternative approaches

(such as the manual overlay of major and minor execution frames in a cyclical executive).

RMS is advantageous because it offers the analytical means for scheduling a task set and is optimal

in this regard since it obtains the most efficient use of runtime, as measured in the key resource -

CPU utilization, and other successful schedulings of the task set also will be shown possible by RMS

while the converse is not provably true. Of course, a feasible schedule may not exist, and RMS will

inform of that condition, but if a schedule is possible, then RMS will relinquish it. The question

remains as to what preconditions are necessary for the use of RMS? In general terms, RMS is

applicable to a wide range of real-time domains intended for implementation using a non-deterministic

and preemptive tasking model such as exists within Ada. Compared to the use of cyclical executives,

sometimes referred to as Time Domain Multiplexing (TDM), in real-time applications, the Ada model

is amenable to good software development practices which can benefit from a separation of logical

and timing concerns.
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3.3.2. Treating Periodics under RMS

Both Ada and RMS require task priorities to be static. For periodic taiks, <RMS demands a priority 0

ordering directly proportional to the frequency of execution. Using a brief example (examined in fur-

ther detail by Borger, Klein, and Veltre), assume a task set composed of the six periodic members of

the INS {PI,P 2 ,P3,P4 ,PP 6 ) ordered by frequency, highest to lowest (and therefore also by priority,

from left to right with ties broken arbitrarily). A simple check can be applied to test whether the total

CPU utilization U of the set does not exceed the worst-case bound provided by RMS of n(21/"-1)

(where n equals the number of tasks) thus indicating that all deadlines will be met. Specifically,

utilization is computed by summing up the individual contributions of each task in the periodic set as 0

follows:

U=C1 C2 C3 C4 CS C6

1"7 2 73 T4 T5 T6

where Ci is the execution time and Ti the period (reciprocal of frequency) for each task Pi. We can

show that the measured value of C1 of the first (highest frequency of 400 Hz) periodic task

(UpdateShipAttitude, see Figure 3-7) is equal to 0.5 milliseconds and that T, is equal to 2.56

milliseconds giving a utilization factor of 19.53%. The total utilization of the six tasks computes to

64.16%. This value must be less then or equal to n(211/-1) for the periodic set (6(2116-1)=0.7348) or

73.48%, and it is. The periodic members of a task set may be harmonic (i.e., their periods are integer

multiples), and this is a special case in RMS. The scheduling of a stric::/ periodic task set with

harmonic frequencies remains feasible even at 100% CPU utilization, assuming that overhead due •

scheduling action is an insignificant addition to each task's utilization factor and that all tasks are

ready to run simultaneously i.e., no phase shifts. For a purely periodic and non-harmonic task set a

figure of 88% is routine, but scheduling can vary from 100% converging down to 69% as the member-

ship approaches infinity. Periodic task sets contend only with preemption since this is a rather com-

mon event whereby high priority tasks impede the execution of tasks having a lower priority. Further-

more, the above test does not include the effect at runtime of kernel-initiated context switching be-

tween tasks, the effects of task interaction (i.e., synchronization), nor the run time devoted to servic- •

ing aperiodic requests.
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3.3.3. Treating Servers under RMS
0 Servers can be successfully modeled in RMS using other means which are employed in the analysis.

Looking at scheduling feasibility, we can envision task-sets made up of any combination of periodics,

aperiodics, and servers; these are the analyzable categories. The problem of periodics aside, the INS

0 must quantify additional factors under RMS to achieve a feasible schedule. The first of these factors

is blocking, whereby a high priority task is impeded in its execution by a lower priority task. Blocking is

associated with shared resource contention and is modeled by a binary semaphore client/server

interaction: a client task requests synchronized access from a shared resource server (task) and the

0 critical section is entered upon gaining access. If a higher priority task requests access to the same

resource it, becomes blocked by the task with the lower priority until the resource has been released.

Placing an upper bound on the amount of blocking which can occur is absolutely essential for reliable

0 scheduling. Uncontrolled blocking has been shown through investigation to be a result of priority

inversion, a detrimental behavior of First-In-First-Out (FIFO) queuing disciplines. The task entry call

in Ada is defined as FIFO, thus engendering priority inversion unless means are found to counter the

effect. For obvious reasons, mutual deadlock, whereby two or more tasks are stalled waiting on

interlocked resources, also needs to be avoided when analyzing for schedulability. The elimination of

conditions leading to both deadlock and priority inversion can be realized through the application of a

principle known as a priority ceiling. The Priority Ceiling Protocol (PCP) is a method for real-time

synchronization that relies on a series of concepts:

* priority inheritance for client tasks
* priority ceiling for server tasks

Priority inheritance allows a blocking task (the server client) to inherit the highest priority of the tasks it

has blocked, eliminating possible preemption by a medium priority task with a resulting further delay

in execution of the blocked tasks. Also, we must restrict synchronization requests to tasks with

priorities higher than that inherited by all currently preempted blocking tasks- a priority ceiling.

Preemption of a blocking (client) task remains possible, but for synchronization a task's priority must

be higher than that of any currently preempted server in the system. This total ordering of priorities

guarantees a bound on blocking since a high priority task can at most be blocked by one lower

priority task. Note that while a blocking task executes at a priority at least equal to that of the highest
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blocked task, Ada insures that the resource server executes at the higher of the two priorities during

rendezvous. The priority ceiling of d server task then simply becomes the highest priority of any client

task. The identified blocking factors must then be included in the formulation to obtain a total task set

utilization. One final caveat, having now dealt with resource contention other contributors to blocking

remain (such as system interrupts) and these must also be characterized using analytical techniques 0

apropos to RMS.

In general, each periodic task Pi must be tested in isolation with an inequality based on its own

utilization, preemption by higher priority tasks (in the case of P1 there are none), and blocking due to

lower priority tasks or other factors (where, except for the last inequality test, it represents the worst-

case blocking time). Each term on the left hand side of an inequality must be within the bound on the

right hand side to guarantee schedulability of the entire task set. We can summarize the

schedulability test with the following general inequality:

..... < n(21/-1)

where B1 is the blocking time for each task Pi.

3.3.4. Treating Aperiodics Under RMS

A noteworthy characteristic of real-time systems and the INS in particular is the occurrence of events

which tend to arrive at irregular (random) intervals and require immediate service (either relaxed to a

certain degree with a soft response requirement i.e., as-soon-as-possible, or with a hard deadline

specified). Random arrivals (Poisson distribution) are unbounded in the sense that the number of

events which can occur within a fixed time frame has no limit. In such a case, scheduling can not be

reasonably predicted. It follows, then, that analyzing the contribution of aperiodics as a utilization •

component requires placing some bound on the worst-case behavior, in the form a minimum inter-

arrival time. Using this knowledge we can satisfy hard deadlines under RMS and, given an average

interarrival time, we can predict expected response. There are a number of ways aperiodics can be

modeled and this is an active area of investigation. For example, an aperiodic event server can be

scheduled to execute within a quota of allocated time intervals proven to be available under RMS in a

periodic task schedule. Once transformed, the handling of aperiodic events can be equivalently

modeled as periodic tasks. Thus, this mechanism provides the framework for an RMS analysis which 0

meets the requirements for both asynchronous response and task set schedulability. The important
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principle here is that techniques exist for quantifying all effects on task set utilization. The difficulty

remains in discovering the worst-case bounds for each contributing factor of the equation.

3.3.5. INS Task Set Summary

With this knowledge in mind, the following characteristics are reflective of the derived INS task set:

* Periodic tasks with hard deadline performance specified
* Aperiodic tasks with performance requirements for rapid event response
* Server tasks for shared resource synchronization

The INS serves as a natural vehicle for experimentation in priority-based preemptive task scheduling.

Since this paradigm is expressed directly in the Ada language, the use of Ada tasks to represent

concurrent elements in the model was a straightforward choice. Previous discussion has attempted to

characterize the derived task set as an accomplished fact. Such is not the case. Only those proc-

esses which have functions derived from the data flow analysis of the previous chapter are ex-

emplified by the current parallel threads and support for specific target processors may dictate a

change in dynamics. A detailed design of each implementation will document these dependent ar-

chitectural features. As an example, the reader should note that task scheduling is an action normally

performed by the Ada runtime, but circumstances might require this to be executed at the user level

with an application task dispatcher and a real-time clock. By replacing existing data transforms and

stores from the DFD (Figure 2-2) with the appropriate units of concurrency, Figure 3-7 summarizes

the overall partition of the conforming Ada task structure:
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4. Module Structure
40

Although the eventual physical structure of the INS will be modular, based fundamentally on Ada

packages with hierarchical internals and inter-package dependencies, the top-most composition of

the simulator program is subsystems, which are groups of logically related packages. Figure 4-1

depicts the partition of these subsystems with their constituent packages and indicates the major

dependencies between the subsystems.

X - Y Subsystem X depends
INS Simulator on Subsystem V

Structure Diagram Aa Pacage

C Subsystem Grouping

Usr IAda Procedure

r Alerts_ I

Main Communicationi
VT1 00._

Manager E nauhOaaa

Motion Simulation Results
Motion_ I T '. S~ulatr Parameter _

Figure 4-1: INS Simulator: Top-Level Structure Diagram

The completed implementation of the INS Simulator will require a number of implementation-

dependent packages to support execution on the intended target processor. These supplementary

modules might include an adjunct task dispatcher with supporting operations, a real-time clock inter-

val timer for scheduling and simulator application functions, a mathematics library for motion simu-

lator appfication, and interface modules (interrupt handlers and device drivers) to meet the special

needs of connected hardware. Modifying real-time software for portability often results in changing

task sets, thus making performance prediction even more reliant on analytical scheduling techniques.
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Table 4-1 shows the location of the implementation-independent tasks already defined within the

subsystems based on the static structure given in Figure 4-1 on page 47:

Task Subsystem
ScreenController VTlOOLScreenControl
ScreenISR VT1 OOScreen..Controi
Keyboard_ISR Keyboard_-manager
CommandProcessor Keyboardmanager
Input -BufferMonitor KeyboardManager
AlertsMonitor Alerts manager
PeriodicDisplayUpdater Windo-w.Manager
ParmTableMonitor ParameterTable-Manager
ResultsTable_-Monitor Results Table
ShipAtttude Updater Motion Simulation0
ShipPosItIonTUpdater Motion Simulation
ShipYeiocityUpdater Motion Simulation
CommsController Communicationoservices
Comms-iSR Communicatilons _Services
AttitudeMessage..Sender Communicatons-$ervices
Navigation MessageSender CommunicationsServices

Table 4-1: Subsystem Tasks

48 CMUISEI-89-TR-38



References
[Borger 89] Borger, M. W., Klein M. H., & Veltre R.

Engineering Real-Time Software in Ada: Observations and Guidelines
Annual Technical Report CMU/SEI-89-TR-22, DTIC: ADA204399, Software En-
gineering Institute, October 1989

[Gomaa 84] Gomaa, H.
A Software Design Method for Real- Time Systems
CACM, Volume 27, No. 9, September 1984, pp 938-949

[Klein 87] Klein, M.
Inertial Navigation System Simulator Program: Top-Level Design
Technical Report CMU/SEI-87-TR-34, DTIC: ADA200605, Software Engineering
Institute, December 1987

[Landherr 87a] Landherr, S.F. & Klein, M.H.
Inertial Navigation System Simulator Program: Behavioral Specification
Technical Report CMU/SEI-87-TR-33, DTIC: ADA200604, Software Engineering
Institute, October 1987

[Landherr 89] Landherr, S.F., Klein, M.H., & Fowler K.J.
Inertial Navigation System Simulator Program: Behavioral Specification,
Revised
Technical Report CMU/SEI-89-TR-35, Software Engineering Institute, October
1989

[Liu 73] Liu, C.L. & Layland, J.W.
Scheduling Algorithms for Multi-programming in a Hard-Real-Time Environment
JACM, Vol 20, No. 1, January 1973, pp 46-61

[Meyers 88a] Meyers, B.C. & Weiderman, N.H.
Systems Specification Document for an Inertial Navigation System Simulator and
External Computer
Technical Report CMU/SEI-88-TR-24, Software Engineering Institute, September
1988

[Meyers 88b] Meyers, B.C. & Weiderman, N.H.
Functional Performance Specification for an Inertial Navigation System Simulator
Technical Report CMU/SEI-88-TR-23, DTIC: ADA204850, Software Engineering
Institute, September 1988

[Meyers 88c] Meyers, B.C. & Mumm, H.
Functional Performance Specification for an External Computer to Interface to an
Inertial Navigation System Simulator
Technical Report CMU/SEI-88-TR-25, DTIC: ADA20061 1, Software Engineering
Institute, September 1988

CMU/SEI-89-TR-38 49



[NAVSEA 82] NAVSEA
Interface Design Specification for the Inertial Navigation System AN! SN-5 to
External Computer 0
NAVSEA T9427-AA-1DS-O 1 OIWSN-4, August 1982

[Nielson 88] Nielson, KjeII and Ken Shumate
Designing Large Real-Time Systems with Ada
McGraw-Hill Book Co., NY, 1988

0

0

0

0

0

0

0

50 CMU/SEI-89-TR-38

0


